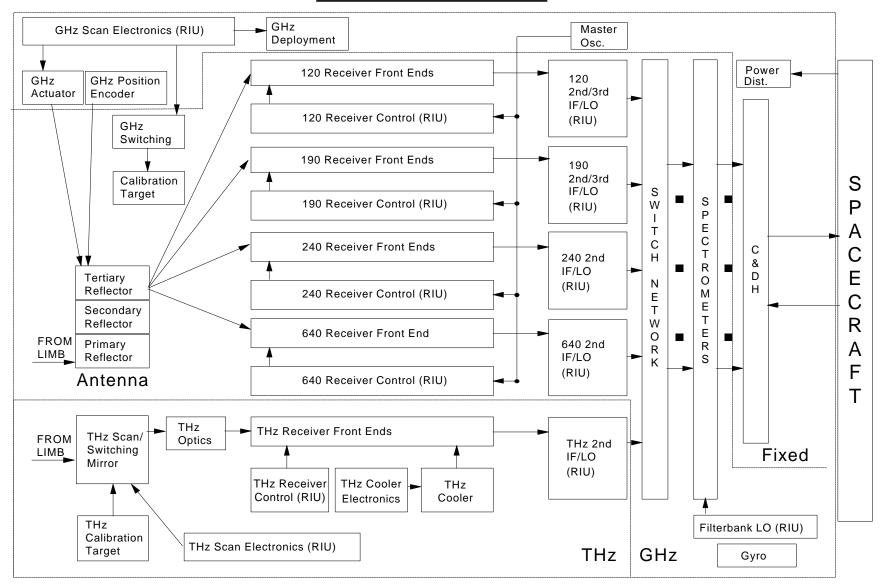
MLS Instrument Concept

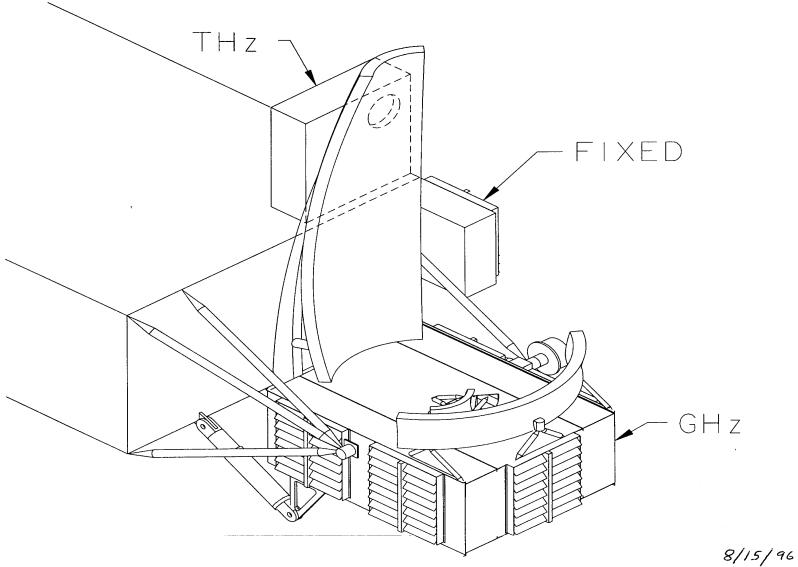
Mark A. Boyles

(Mark.A.Boyles@jpl.nasa.gov)

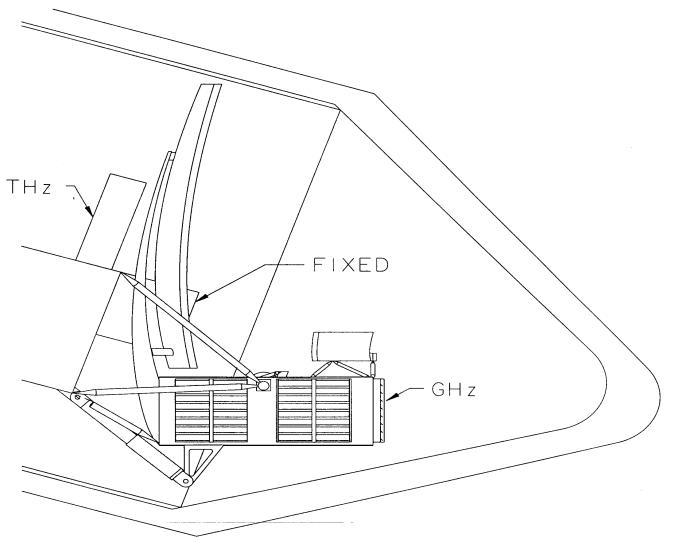
August 15, 1996


Jet Propulsion Laboratory

CHEM Cooperative Agreement Kickoff/Workshop System Description


- Three Modules: GHz, THz, and Fixed
 - GHz and THz modules are independent except for Switch Network and Filterbanks assemblies
 - These assemblies are shared and housed in the GHz module.
- GHz Module:
 - Cylindrically symmetric telescope optics for the GHz module with a parabolic torus primary, hyperbolic torus secondary and elliptical torus tertiary
 - Arrayed receivers ranging in frequency from 120 to 640 Ghz with separate boresights
 - Receiver designs are based on MMIC technology for the 120 and 190 GHz receivers and planar technology for the 240 and 640 GHz receivers
- THz Module:
 - Design is based on a hot electron bolometer mixer, photomixer st LO and mechanical cooler
 - Contains its own scan mechanism and optics
- Fixed Module:
 - Houses common C&DH and Power Distribution Assemblies as well as some assemblies required for the GHz measurements.

CHEM Cooperative Agreement Kickoff/Workshop System Description


MLS BLOCK DIAGRAM

MLS Launch Configuration

8/15/96

CHEM Cooperative Agreement Kickoff/Workshop System Resources

Resource	Current Best Estimate
Mass (kg)	
GHz	250
THz	50
Fixed	<u>45</u>
Total	345
Allocation (inc. 10% cont.)	330
Power (W)	
All 3 Modules	390 (Primary Operating Mode)
Allocation (inc. 10% cont.)	429
Envelope (m ³)	
GHz	1.5 x 1.7 x 2.5
THz	0.3 x 0.7 x 0.8
Fixed	0.5 x 0.2 x 0.5 (in GHz module envelope in current drawings)
Uncompressed Data Rate (kbps)	≤ 150

CHEM Cooperative Agreement Kickoff/Workshop Spacecraft Interfaces

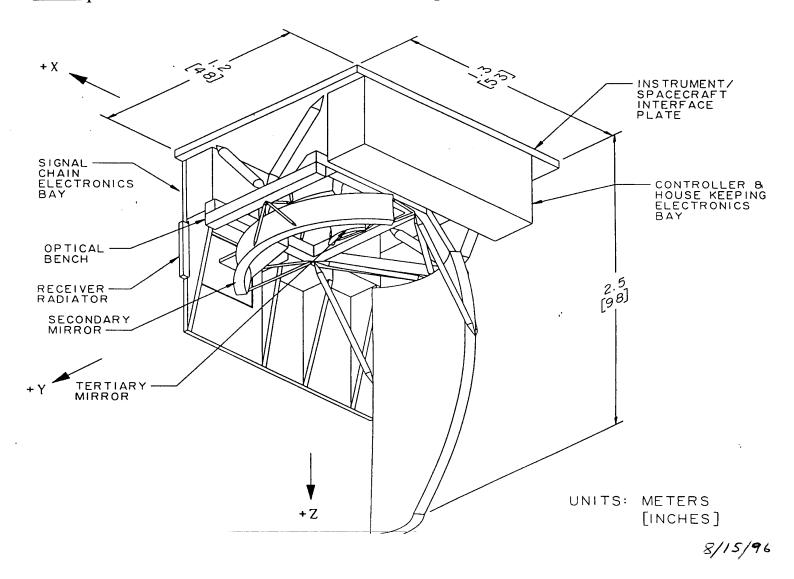
- The instrument team is working to the General Interface Requirements Document (GIRD) for EOS Common Spacecraft/Instruments Revision A, January 1994, GSFC 422-11-12-01 including changes CH-01 & CH-02.
 - Currently comply with all GIRD requirements except:
 - Deviations proposed in the Draft version of the Unique Instrument Interface Document (UIID) for the Microwave Limb Sounder, September 1994, GSFC 424-28-24-02
 - Torque disturbances

Interface	Requirements
Mechanical	per GIRD; Kinematic mounts
Thermal	per GIRD; Isolated; Cold space FOV of TBD size required for all 3 modules
Electrical	per GIRD
Data	per GIRD
FOV (°)	
Along Track GHz and THz	60 to 72
Cross Track GHz	± 30 with negotiable offset
Cross Track THz	<u>+</u> 0.1

CHEM Cooperative Agreement Kickoff/Workshop Spacecraft Interfaces

- Unique MLS accommodation requirements:
 - Required at ground processing facility
 - High angular and temporal resolution gyro data
 - Temperature data for the spacecraft structure
 - Orientation of any device/object close to the MLS FOV
 - Quiet and pulse bus voltages
 - Solar position in S/C coordinates
 - Required at the instrument
 - Oblateness data with a resolution of ~0.5 km or better
 - Periodic marker (once per orbit)

CHEM Cooperative Agreement Kickoff/Workshop Special Considerations


	Requirements
GHz Module Scan	Scan TBD kg; ~1° pk-pk; 14.2 s (TBR) one way, 2.5 s (TBR) for reversal and calibration target scan; repeated every 33.4 s; about center of mass
Calibration Target Scan	Scan 10 kg; ≤ 180° pk-pk; 0.75 s (TBR) one way, 1 s (TBR) view period; repeated every 16.7 s
Instrument Deployment	TBD; Looking at schemes which deploy entire instrument with GHz Module actuator or which deploy primary mirror only
Pointing both Modules	
Control/Placement (arc sec)	180 roll, 1800 pitch/yaw
Jitter (arc sec/sec)	50 roll/pitch, 1800 yaw 0.1 to 30 s
Jitter Knowledge (arc sec/sec)	1 roll/pitch, 10 yaw (met by internal instrument gyro on common s/c)
2.5 THz/GHz Co-Alignment	1° yaw and roll

CHEM Cooperative Agreement Kickoff/Workshop Flexibility

• The MLS Instrument has flexibility in a number of areas.

- The design of the MLS Instrument can be optimized for different spacecrafts:
 - Gyro, GHz Actuator, GHz Position Encoder and GHz Deployment Mechanism could be removed or modified
 - The envelopes of the different assemblies can vary
 - C&DH, thermal, power and structural interfaces could be changed
- Feedback from a spacecraft contractor would be welcomed.

Example MLS GHz Module "Dedicated" Spacecraft Configuration

CHEM Cooperative Agreement Kickoff/Workshop Backup Charts

GIRD Waivers Listed in the MLS UIID

- Optical Cube Surface:
 - Flatness The surface shall be planar to within $\lambda/4$ rms, where λ is visible light.
 - Orthogonality Knowledge of 1 arc sec
- Survival Heater Power:
 - The MLS survival power requirement is TBD% of the average instrument power.
- Connector Clearance:
 - Clearance provided around the outside of some of the mated connectors can be < 50 mm.
- Instrument Survival:
 - The MLS instrument shall withstand direct solar input into the primary reflector for 30 minutes without permanent degradation.

CHEM Cooperative Agreement Kickoff/Workshop Backup Charts

GIRD Waivers Listed in the MLS UIID Continued

- Harness Provider:
 - Intra-instrument harness shall be provided by the Instrument Provider.
- Command Sequence
 - During ground testing and in-flight operation the application of power to MLS shall always be sequenced and executed in a prescribed order. i.e. All MLS electrical power loads shall not be powered by a single command. This waiver also applies when the spacecraft is recovering from an anomaly.
- Minimum Fixed Base Frequency:

Each separately mounted instrument component, configured for launch, shall have a fixed base frequency of \geq TBD Hz.

CHEM Cooperative Agreement Kickoff/Workshop Backup Charts

Questions for TRW

- 1. Are there any limitations on the number of attachment points and their location?
- 2. Are there any limitations on the location of the instrument center of gravity?
- 3. Can we get a dynamic shroud and spacecraft launch configuration database?